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Table 1 Information of the Participants and Exhibitors
of International Conference for Physiological Sciences 2016

Regular Registration Student
Australia 8 0 8
Austria 3 0 3
Chinese Taipei 12 0 12
Mainland China 426 321 747
Denmark 2 0 2
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Regular Registration Student Total ‘
Finland 2 1 3
Germany 1 0 1
Hong Kong-China 5 0 8
India 1 0 1
Iran 1 0 1
Japan 13 0 13
Korea 3 8 11
Malaysia 1 0 1
New Zealand 4 0 4
Norway 1 0 1
Pakistan 1 0 1
Saudi Arabia 1 0 1
Singapore 1 0 1
Sweden 2 0 2
UK 17 0 17
USA 51 1 52
Total 556 331 887
Exhibitors 40
Staff 75
Total participants 1008

Table 2 Summary of Plenary Lectures, Participating Society
Named Symposia, Young Physiologist Symposium and Posters

Types of Presentation Society Name Counts
Plenary Lecture 7
speakers
Participating American Physiological Society Symposium 3
ggé’?elglosg;r:nagl)osia Australian Physiological Society Symposium 1

Austrian Physiological Society Symposium 1

Chinese_ Physiological Society in Taipei 3

symposium

Chinese.Association for Physiological Sciences 21

Symposium

Physiological Society of Japan Symposium 2

Physiological Society of New Zealand Symposium 1

Psychoneuroimmunology Research Society 1
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Types of Presentation Society Name Counts
Symposium
The Physiological Society Symposium 3
The Scandinavian Physiological Society 5
Symposium
Young Physiologist 4
Symposium
The American Physiological Society and The 1
Workshops Physiological Soc.lety '
The Psychoneuroimmunology Research Society 1
(PNIRS)
Posters 385

Table 3 List of Excellent Young Physiologist Symposium Speakers

Speakers Name Affiliation Nationality
Xin Cong Peking University China
Linlin Ma The University of Queensland Australia
Yu Lin San Yat-sen University China
Chunjiong Wang Tianjin Medical University China

Institute of Neuroscience, Shanghai

Qiaogiao Yang Institutes for Biological Sciences China

Li Zhou Capital Medical University China
Fouth Military Medical

Yaoping Cheng . . Y China
University

Jing Li Peking University China

Table 4 List of Excellent Poster Presenters

Poster NO. Presenter Name Affiliation Nationality
P1-9 Hye Won Kim Kangwon Natlt.)n.al University South
School of Medicine Korea
P1-16 Yunping Mu Fujian Medical University China
P5-17 Bingxue Li Yianbian University China
P1-55 Zhiling Guo University of California at Irvine China
P1-56 Linlin Li Peking University China
P1-60 Shuangshuang Fujian Medical University China
Zhang
p2-2 Xinghui Li Fudan University China
: Institute of Cardiovascular :
P2-10 Yan Wel Research, Southwest Medical China
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Poster NO.

Presenter Name

Affiliation

Nationality

P12-4 Liyuan Liu ﬁgL‘;ﬂf Szibi;fsi‘;‘ence’ Beijing China
P3-7 Fang Yuan Hebei Medical University China
pP3-22 Qingmei Cheng Central South University China
P4-6 Yuansheng Yao Capital Medical University China
P5-3 Fengjv Jia Qingdao University China
P5-12 Junli Zhen Capital Medical University China
P5-22 Tian Li Shanxi Medical University China
P5-50 Xiaoni Liu Fudan University China
P5-71 Jicheng Li Jilin University China
P5-73 Shumsuzzaman Zhejiang University China
Khan
74| poGan
P5.89 Jing Liu Eilr?tg? University Health Science China
P6-5 Mingxiao Wang New York Medical college China
P7-4 Yufeng Zhao Xi'an Medical University China
pP7-15 Ji Li Capital Medical University China
pP7-23 Zixi Chen Second Military Medical University China
P8-18 Hong Yin Nanjing Medical University China
P8-23 Gang Wang LSme(i:\?:rii![\f/mtary Medical China
P8-28 Yaoxue Yin Nanjing Medical University China
P9-9 Yanyan Zhang Beijing Sport University China
P9-17 Ying Gao University of Jyvaskyla Finland
P9-25 Xiaojing Lin Shanghai University of Sport China
P10-13 Rui Li The University of Queensland Australia
P10-15 Jing Yang Fourth Military Medical University China
P11-13 Guangyin Xu Soochow University China
P11-14 Yanmin Zhang Second Military Medical University China
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Protein Kinase G Inhibits Flow-Induced Ca** Entry into Collecting Duct Cells

Juan Du,*™ Wei-Yan Wong,”‘Jr Lei Sun,*" Yu Huang,*' and Xiaoqiang Yao*'
*School of Biomedical Sciences and 'Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong
Kong, China; and j"Department of Physiology, Anhui Medical University, He Fei, China

The renal cortical collecting duct (CCD) contributes to the maintenance of K™ homeostasis by
modulating renal K secretion. Cytosolic Ca®" ([Ca”'];) mediates flow-induced K" secretion in the CCD,
but the mechanisms regulating flow-induced Ca®* entry into renal epithelial cells are not well
understood. Here, we found that atrial natriuretic peptide, nitric oxide, and cyclic guanosine
monophosphate (cGMP) act through protein kinase G (PKG) to inhibit flow-induced increases in
[Ca®']; in M1-CCD cells. Coimmuno-precipitation, double immunostaining, and functional studies
identified heteromeric TRPV4-P2 channels as the mediators of flow-induced Ca”" entry into M1-CCD
cells and HEK293 cells that were coexpressed with both TRPV4 and TRPP2. In these HEK293 cells,
introducing point mutations at two putative PKG phosphorylation sites on TRPP2 abolished the ability
of ¢cGMP to inhibit flow-induced Ca®" entry. In addition, treating M1-CCD cells with fusion peptides
that compete with the endogenous PKG phosphorylation sites on TRPP2 also abolished the
cGMP-mediated inhibition of the flow-induced Ca>" entry. Taken together, these data suggest that
heteromeric TRPV4-P2 channels mediate the flow-induced entry of Ca*" into collecting duct cells.
Furthermore, substances such as atrial natriuretic peptide and nitric oxide, which increase cGMP,
abrogate flow-induced Ca®" entry through PKG-mediated inhibition of these channels.
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The cortical collecting duct (CCD) is an
important renal tubular segment that has final
control over renal K™ secretion'. The magnitude
of K’ in the CCD is partially

determined by the electrochemical gradient

secretion

generated by transepithelial Na® absorption that
favors K™ diffusion from the cells into the
tubular fluid.*® lon transport in the CCD,
including K" secretion (and Na™ absorption), is
regulated by chemical factors that include
hormones and autocrines in addition to physical
tubular fluid flow. Atrial
natriuretic peptide and nitric oxide are two

factors such as
important chemical factors that inhibit K"
secretion and Na™ absorption in the CCD.*’
However, high tubular flow stimulates K"
secretion in the CCD.**

An important early signal for flow response is
the rise of cytosolic Ca®" ([Caﬁ]i) in CCD
epithelial cells. Evidence suggests that these
[CaH]i rises are requisite for flow-induced K"
secretion in these cells.*® There is intense
interest in searching for the plasma membrane
channels that mediate flow-induced Ca®" entry in
renal epithelial cells. Several candidate channels
have been proposed, including transient receptor
potential vanilloid 4 (TRPV4),”® transient
receptor potential polycystin 1 (TRPP1)-TRPP2
complex,’ and  heteromeric =~ TRPV4-P2
It is suggested that TRPP1 and

TRPP2 may form a physical complex in which

10
channels.

TRPP1 serves as a sensor to transduce the flow
stimuli to TRPP2, which is a Ca’" entry
channel.’ A study by Kéttgen ef al.'® showed that,
in Madin—Darby canine kidney distal tubule cells,
TRPV4 and TRPP2 formed heteromeric
TRPV4-P2 channels in the cilia, which is a
crucial structure for flow sensation.” The study
by Kottgen er al'® also suggested that the
TRPV4-P2
flow-induced Ca™" entry in these cells. More

heteromeric channels mediate

' Received October 8, 2011. Accepted February 15, 2012.

recently, we found that additional heteromeric
TRP channels, namely TRPV4-C1 channels, are
responsible for flow-induced Ca’* entry in
vascular endothelial cells."!

Very little is known about the regulation of
flow-induced Ca" entry in renal epithelial cells.
TRPV4 is activated by hypotonic cell swelling."?
The activation of TRPV4 by cell swelling is
reportedly mediated through arachidonic acid and
its downstream metabolite epoxyeicosatrienoic
acids.'” The flow activation of TRPV4 in ciliated
oviductal cells is also believed to be mediated by
arachidonic acid.” In addition, a number of other
signaling molecules/pathways, including protein
kinase C, EGFs, and receptor tyrosine kinases,
may regulate TRPV4 and/or TRPP2,'*'* but it is
unclear whether these molecules/ pathways play
any role in flow-induced Ca®* responses.

The present study identified heteromeric
TRPV4-P2 as the channels that mediate the
flow-induced Ca®" entry in M1-CCDcells. More
importantly, we uncovered a novel regulatory
mechanism for this Ca®* entry. We found that
cyclic guanosine monophosphate (cGMP) and
protein kinase G (PKG) inhibit the Ca®" entry
through their action on heteromeric TRPV4-P2
channels. PKG phosphorylates on TRPP2'"'**
and TRPP2%"* to inhibit heteromeric TRPV4-P2
channels, thereby negatively regulating the
flow-induced Ca®" entry in M1-CCD cells.

Results

Effect of cGMP, PKG, Atrial Natriuretic Peptide,
and Nitric Oxide on Flow-Induced Ca®" Entry in
M1-CCD cells

The application of fluid flow induced [Ca®'];
transients in M1-CCD cells (Figure 1, A and B).
The Ca®" transients were absent when the bath
solution was Ca*’-free (Figure 1B), suggesting
the involvement of Ca>" entry but not store Ca>"
release. In the presence of 8-Br-cGMP (2 mM),
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which activates PKG, flow-induced [Cay]i
transients were inhibited (Figure 1, A and B).
KT5823 (1 uM), a selective inhibitor of PKG,15
reversed the inhibitory action of 8-Br-cGMP
(Figure 1, A and B). KT5823 treatment also
made the flow-induced [Ca2+]i transients much
more sustained. After the [Ca2+]i reached its
plateau, the removal of bath Ca®" caused an
immediate reduction in the [Ca2+]i level
(Supplemental Figure 1), further supporting the
involvement of Ca*" entry but not store Ca>"
release for the [Ca2+]i rises. These data showed
the inhibitory effect of ¢cGMP and PKG on
flow-induced Ca*" entry inM1-CCD cells.

Atrial natriuretic peptide and nitric oxide are
two endogenous factors that increase the
cytosolic cGMP level in renal CCDcells.*” As
expected, both atrial natriuretic peptide (10nM)
and a nitric oxide donor (+/-)-S-nitroso-N-
acetylpenicillamine (SNAP; 50 puM) inhibited
the flow-induced Ca*" entry in M1-CCD cells
(Figure 1, C and D). This inhibition was reversed
by KT5823 (1 uM), suggesting the involvement
of PKG (Figure 1, C and D). Note that a tiny
residual fluorescence change to flow was
observed in cGMP-treated MI1-CCD cells
(Figure 1A), nontreated wild-type HEK293 cells
(data not shown), and empty plasmid
vector-transfected HEK293 cells (see Figure 3).
This fluorescence change may reflect a slight
cell movement during flow disturbance, or it
may be caused by residual flow-sensitive
components.

The above-mentioned
performed under a flow shear force of ~5
dyne/cm’®. We also tested a flow shear force of
0.5 dyne/cm’, which is the physiologic shear
force for distal tubular cells expected in an

experiments were

euvolemic animal.'® The flow at 0.5 dyne/cm’
elicited similar [Ca2+]i rises but at a smaller
magnitude (Figure 1, E and F). The [Ca*']; rises
were, again, sensitive to the inhibition of
8-Br-cGMP (2 mM), atrial natriuretic peptide (10
nM), and SNAP (Figure 1, E and F). KT5823 (1
puM) reversed the inhibition (Figure 1, E and F).

Because the magnitudes of [Caﬂ]i rises at ~5
dyne/cm® were relatively large, the data were
easy to analyze and subjected to less error.
Therefore, ~5 dyne/cm® was used in the latter

experiments.
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Figure 1. Effect of cGMP, PKG, atrial natriuretic peptide,
and nitric oxide on flow-induced Ca*" entry in M1-CCD
cells. (A, C, and E) Representative traces illustrating the
time course of flow-induced [Ca®']; responses at a shear
stress of (A and C) 5 dyne/cm? or (E) 0.5 dyne/cm® (low
saline solution [SS]). (B, D, and F) Summary showing
the maximal change in flow-induced [Ca*']; responses
(A[Ca*],) for cells at a shear stress of (B and D) 5
dyne/cm?® or (F) 0.5 dyne/cm® (low SS). Cells were
pretreated for 10 minutes with (A, B, E, and F) 2 mM
8-Br-cGMP with or without 1 uM KT5823, (C, D, and F)
10 nM atrial natriuretic peptide (ANP) with or without 1
uM KT5823, or (C, D, and F) 50 uM SNAP with or
without 1 pM KT5823. Control had no treatment. Cells
were bathed in NPSS containing 1% BSA except for
OPSS series (a bar in B), in which the bath was Ca?*-free.
The solid bar on top of the traces indicates the period
when laminar flow was applied. Data are given as the
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mean = SE (n=8-10 experiments and 10-20 cells per
experiment). **P<<0.01 versus 8-Br-cGMP (B and F).
#P<20.01 versus control (D and F). *P<C0.01 versus the
corresponding ones without KT5823. OPSS, Ca*'-free
physiological saline solution.

Role of TRPV4, TRPP2, and Transient Receptor
Potential Canonical 1 in Flow-Induced Ca®*
Entry in M1-CCD Cells

Dominant negative constructs for TRPV4 and
TRPP2  (TRPV4M®™®  and  TRPP2™'Y,
respectively) were used to explore the possible
roles of TRPV4 and TRPP2 in the flow-induced
Ca”" entry in M1-CCD cells.'”"® The expressions
of TRPV4M® and TRPP2™"Y each abolished
the flow-induced Ca’ entry in these cells
(Figure 2, A and B). The possible involvement of
transient receptor potential canonical 1 (TRPC1)
was also explored using a TRPCI-blocking
antibody T1E3. T1E3 targets the E3 region near
the ion permeation pore of TRPC1."* The
specificity of T1E3 was previously confirmed in
immunoblots and functional studies.'"'**" The
immunostaining of nonpermeabilized HEK293
cells that were overexpressed with TRPV4 and
TRPC1 showed that TIE3 staining was
concentrated at the plasma membrane
(Supplemental Figure 2), supporting that T1E3
binds to the extracellular epitope of TRPCI.
Interestingly, the T1E3 treatment (1:100 for 1
hour) had no effect on the flow-induced Ca*"
entry in M1-CCD cells (Figure 2, C and D).

Physical Association of TRPV4 with TRPP2 in
M1-CCD Cells

Coimmunoprecipitation and double immunostaining
were used to explore the physical interaction of
TRPV4 and TRPP2. Two antibodies for
coimmunoprecipitation, the anti-TRPV4 antibody
and anti-TRPP2 antibody, were previously
reported to be highly specific.?'** In
coimmunoprecipitation experiments, the anti-TRPP2
antibody could pull down TRPV4 in protein lysates
freshly prepared from M1-CCD cells (Figure 3A).
Furthermore, an anti-TRPV4 antibody could
reciprocally pull down TRPP2 (Figure 3B). In
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which  the
immunoprecipitation was performed with IgG
purified from preimmune serum, no band was
observed (Figure 3, A and B). These data
indicate that TRPV4 physically associates
with TRPP2 in M1-CCD cells.

The selective interaction of TRPV4 with
TRPP2 was supported by double immunostaining.
Staining for TRPV4 and TRPP2 was observed in
cultured M1-CCD cells (Figure 3C). Overlaying
the TRPV4 signal (green) with the signal of
the TRPP2 (red) showed clear colocalization
(yellow) of TRPV4 and TRPP2 (Figure 3,
C-C”) in the cytosol and the plasma
membrane. TRPV4 and TRPP2 were also
found to be concentrated in the cilia in
M1-CCD cells (Figure 3, D-D"’).

control experiments in

Heteromeric TRPV4-P2 Channels and Their
Role in the Flow-Induced Ca* Entry in
HEK?293 Cells That Were Overexpressed with
TRPV4 and TRPP2

Attempts were made to verify whether TRPV4
and TRPP2 could interact with each other to
form a flow-sensitive channel by overexpressing
these two proteins in HEK293 cells. As Figure 4,
A and B shows, the flow was able to induce
[Ca2+]i rises in HEK293 cells that were
coexpressed with TRPV4 and TRPP2. The
kinetics of [Ca®']; rises in these cells were
different from the cells that were expressed with
TRPV4 alone. For the former, the [Caz+]i
responses to flow were sustained without
apparent decay in the experimental duration
of ;10 minutes (Figure 4A). For the latter, the
responses to flow were transient (Figure 4A). In
cells that were coexpressed with TRPV4 and
TRPP2, the replacement of TRPV4 and TRPP2
with their mutant counterparts (TRPV4™®*°P and
TRPP2™'"Y, respectively) each abolished the
flow-induced [Caz+]i responses (Figure 4B).
These data support the formation of heteromeric
TRPV4-P2 channels and their functional role in
mediating the flow-induced Ca*" entry. In
control experiments, vector-transfected HEK293



cells did not respond to flow (Figure 4, A and B).
The flow also failed to elicit any [Ca®"]; rise in
HEK293 cells that were expressed with TRPP2
alone (Figure 4, A and B) or those cells that were
coexpressed with TRPV4 and TRPP2 but bathed
in a Ca*'-free solution (Figure 4B).

Coimmunoprecipitation experiments found
that TRPV4 and TRPP2 could pull each other
down when they were coexpressed in
HEK?293 cells (Figure 4, C and D). Double
immunostaining showed that TRPV4 and
TRPP2 were colocalized in the cytosols and
the plasma membrane of these cells (Figure 4,
E-E”’). Furthermore, TRPV4 and TRPP2
were found to be concentrated in the cilia
(Figure 4, F-F”").

cGMP and PKG Regulation of the Flow-Induced
Ca** Entry in HEK293 Cells That Were
Overexpressed with TRPV4 and TRPP2

We next used the HEK293 cell overexpression
system to confirm the PKG regulation of
heteromeric TRPV4-P2 channels. In these
experiments, HEK293 cells were first stably
transfected with PKGla and named PHEK
cells. These PHEK cells expressed a much
higher level of PKGla compared with
wild-type HEK293 cells.”> The PHEK cells
were then transiently transfected with either
TRPV4 or TRPV4+TRPP2. In PHEK cells
expressing TRPV4, the 8-Br-cGMP (2 mM)
treatment had no effect on flow-induced
[Ca®"]; rises (Figure 5, A and B). In contrast,
8-Br-cGMP markedly reduced the magnitude
of flow-induced [Ca2+]i rises in the cells that
were coexpressed with TRPV4 and TRPP2
(Figure 5, C and D). KT5823 (1 uM), a potent
and highly specific PKG inhibitor, reversed the
inhibitory action of 8-Br-cGMP (Figure 5, C
and D). Point mutants were constructed in
which two putative PKG phosphorylation sites
on TRPP2 (T719A and S827A) were mutated;
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Figure 2. TRPV4 and TRPP2 involvement in

flow-induced [Ca®']; entry in M1-CCD cells. (A and C)
Representative traces illustrating the time course of
flow-induced [Ca®']; responses. (B and D) Summary
showing the maximal change in flow-induced [Ca;
responses (4[Ca®']). In A and B, the cells were
transfected with an empty plasmid vector (vector),
TRPVAMED (y4M60D) - o TRppoDSIV (poDSIIVy [y (o
and D, the cells were pretreated with Preimmune IgG
(Preimmu) or T1E3. Data are given as the mean 6 SE
(n=8-10 experiments and 10-20 cells per experiment).
4P<<0.01 versus vector.
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Figure 3. Physical interaction between TRPV4 and
TRPP2 in MI-CCD cells. (A and B)
Coimmunoprecipitation. The pulling antibody and the
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blotting antibody are indicated. Control
immunoprecipitation was performed using preimmune
1gG (labeled as Preimmu). Anti-P2 indicates anti-TRPP2,
anti-V4 indicates anti-TRPV4, IB indicates immunoblot,
and IP indicates immunoprecipitation (n=3 experiments).
(C-D”’) Double immunostaining. (C and D) TRPV4 and
(C’ and D’) TRPP2 were colocalized in (C” and D”;
merge) the cytosol, the plasma membrane, and the
primary cilium of M1-CCD cells. D-D” are confocal
images of z-series stacks showing the primary cilium

emerging from the apical membrane.
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Figure 4. Physical association and functional role of
TRPV4 and TRPP2 in HEK293 cells that were
coexpressed with TRPV4 and TRPP2. (A and B)
Flow-induced [Ca®']; responses. (A) Representative
traces illustrating the time course of flow-induced [Ca®'];
responses. (B) Summary showing the maximal change in
flow-induced [Ca®']; responses (A[Ca*']). Cells were
bathed in NPSS containing 1% BSA except for 0PSS
series (labeled bars in B), in which the bath was
Ca?'-free. Cells were transfected with an empty vector
(vector), TRPP2 (P2), TRPV4 (V4), TRPV4+TRPP2
(V4+P2), TRPVAMBDLTRPP2  (VaMSBP4p2)  or
TRPV4+TRPP2P'"Y (V4+P2P3"Y) Data are given as the
mean = SE (n=6-8 experiments and 8-20 cells per
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experiment). *P<<0.01 versus vector. "P<<0.01 versus
V4+P2. (C and D) Coimmunoprecipitation. The pulling
antibody and the blotting antibody are indicated. Control
immunoprecipitation was  performed using the
preimmune IgG (Preimmu; n=3 experiments). (E-F”’)
Double immunostaining. (E and F) TRPV4 and (E’ and
F’) TRPP2 were colocalized in (E” and F”’; merge) the
cytosol, the plasma membrane, and the primary cilium of
transfected HEK293 cells. F-F”* are confocal images of
z-series stacks showing the primary cilium emerging

from the apical membrane.
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Figure 5. Flow-induced [Ca*']; responses in HEK293
cells that were transfected with individual TRPV4 or
TRPP2 or cotransfected with both TRP isoforms. (A and
C) Representative traces illustrating the time course of
flow-induced [Ca*']; responses. (B, D, and E) Summary
showing the maximal change in flow-induced [Ca*'];
responses. HEK293 cells stably transfected with a
PKGla gene are labeled as PHEK cells. All cells were
bathed in NPSS containing 1% BSA. Cells were
pretreated with 8-Br-cGMP (2 mM) with or without
KT5823 (1 uM) for 10 minutes. Data are given as the



mean + SE (n=6-8 experiments and 8-20 cells per
experiment). V4 indicates TRPV4, P2 indicates TRPP2,
and P25%"* and P2"""* are point mutants of TRPP2,
respectively. °p<0.01 compared with vector. ¥p<0.01
compared with 8-Br-cGMP alone. “P,0.01 compared
with V4+P2 without 8-Br-cGMP. “P<<0.01 compared
with V4+P2 with 8-Br-cGMP.
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Figure 6. PKG phosphorylation sites in M1-CCD cells.
(A) Representative traces illustrating the time course of
flow-induced [Ca®']I responses. (B) Summary showing
the maximal change in flow-induced [Ca®']; responses
(4[Ca?*]). All cells were bathed in NPSS containing 1%
BSA. Cells were pretreated with 8-Br-cGMP (2 mM)
with or without TAT-P2"" (100 nM) and/or TAT-P2%%?
(100 nM) for 10 minutes before flow. Data are given as
the mean = SE (n=6-8 experiments and 8-20 cells per
experiment). *P<<0.01 versus 8-Br-cGMP.

8-Br-cGMP inhibition was reduced if TRPP2
was replaced with TRPP2""""* or TRPP25%*7A
(Figure 5E). cGMP inhibition was abolished if
the double mutant TRPP?T""*A58274 wag used to
replace TRRP2 (Figure 5SE). These data indicate
that PKG had no direct effect on TRPV4. Instead,
it inhibited the function of heteromeric
TRPV4-P2 channels by phosphorylating on the
Thr-719 and Ser-827 of TRPP2. Note that cGMP
did not have as great an effect on the Ca>" entry
in TRPV4-P2—coexpressing HEK293 cells
compared with M1-CCD cells. This result could
be because of the formation of not only
heteromeric TRPV4-P2 but also homomeric
TRPV4 when HEK293 cells were cotransfected
with TRPV4 and TRPP2. As previously
mentioned, homomeric TRPV4 is not sensitive
to cGMP or PKG.

Endogenous PKG Phosphorylation Sites in
M1-CCD cells

To test whether the Ser-827 and Thr-719 on
TRPP2 are endogenous PKG phosphorylation
sites important for flow regulation in M1-CCD
cells, we synthesized two fusion peptides,
transactivator of transcription (TAT)-TRPP2%**
and TAT-TRPP2'”.  TAT-TRPP2***"  and
TAT-TRPP2"" were synthesized by fusing the
two PKG phosphorylation sites in TRPP2 to the
membrane translocation signals from HIV-1 tat
protein.”* This fusion allowed for the efficient
and abundant intracellular delivery of exogenous
substrates for PKG (TRPP2%**” and TRPP2""")
that compete with  endogenous PKG
phosphorylation sites, shielding the endogenous
PKG phosphorylation sites of TRPP2 from PKG
attack. The results show that treating M1-CCD
cells with TAT-TRPP2***" (100 nM) or
TAT-TRPP2"" (100 nM) markedly reduced the
8-Br-cGMP inhibition on flow-induced [Ca*';
rises (Figure 6). The combined application of
TAT-TRPP2**+TAT-TRPP2"""” abolished the
8-Br-cGMP inhibition on flow-induced [Ca2+]i
rises (Figure 6). These data strongly suggest that
¢GMP and PKG acted on Ser-827 and Thr-719
of TRPP2 to inhibit heteromeric TRPV4-P2
channels in M1-CCD cells.

DISCUSSION

The major findings of this study are as follows. (/)
Atrial natriuretic peptide, nitric oxide, and cGMP,
through their actions on PKG, inhibit
flow-induced Ca*" entry in M1-CCD cells. (2)
Coimmunoprecipitation, double immunostaining,
and functional studies suggest that heteromeric
TRPV4-P2 channels mediate the flow-induced
Ca”" entry in M1-CCD cells and HEK293 cells
that are overexpressed with TRPV4 and TRPP2.
Together, these data showed the critical role of
PKG regulation of heteromeric TRPV4-P2
channels in flow-induced Ca*" entry in M1-CCD
cells. Evidence of PKG involvement is strong,
including the following findings. First, we
observed the 8-Br-cGMP inhibition and the
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KT5823 reversal of flow-induced Ca®" entry in
both M1-CCD cells and HEK293 cells that were
coexpressed with TRPV4 and TRPP2. KT5823 is
a highly selective inhibitor for PKG, with
K=0.234 uM." At the concentration that we used
(1 uM), it should not affect protein kinase A (K;>
10 uM). However, we could not completely rule
out the involvement of protein kinase C (Ki=4
uM)." Second, in the HEK293 overexpression
system, point mutation at two putative PKG
phosphorylation sites on TRPP2 proteins
(TRPP2T7194758274) aholished the inhibitory action
of ¢cGMP on flow-induced Ca®" entry. Third, in
M1-CCD cells, the application of fusion peptides
TAT-TRPP2""“+TAT-TRPP2***’, which compete
with endogenous PKG phosphorylation sites on
TRPP2, abolished the inhibitory action of cGMP
on flow-induced Ca*" entry. These results support
that PKG acts on the Thr-719 and Ser-829 of
TRPP2 to inhibit heteromeric TRPV4-P2
channels in M1-CCD cells.

[Ca®']; level is an important second messenger
that affects K' secretion in renal CCD epithelial
cells. It is well documented that fluid flow in the
renal tubule induces [Ca%]i rises in CCD cells,
which subsequently stimulate large-conductance
Ca*"-activated K channels that result in K"
secretion in these cells.”® In the present study,
we found that atrial natriuretic peptide and nitric
oxide, through their action on PKG, inhibited the
flow-induced [Ca®']; entry in MI-CCD cells.
Previously, atrial natriuretic peptide and nitric
oxide were known to inhibit Na™ reabsorption in
CCD.*® Because transepithelial Na' absorption
in the CCD is the major determinant for K
secretion,” we speculate that atrial natriuretic
peptide and nitric oxide, through their actions on
PKG, would inhibit Na" absorption, which in
turn, reduces the K" secretion. Additional studies
are needed to explore the precise role of this
pathway in regulating distal tubular transport.

Several TRP channels have previously been
proposed as candidates for mediating the
flow-induced Ca’" entry in renal epithelial
cells and vascular endothelial cells—two
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major cell types that are exposed to fluid flow
in vivo. These candidate channels include
TRPV4,” ®* TRPP1-P2 complex,” heteromeric
TRPV4-P2,10 and heteromeric TRPV4-C1."
and double
immunostaining experiments showed the
physical association of TRPV4 and TRPP2. In
functional studies, dominant negative mutants
of TRPV4 and TRPP2 (TRPV4MP and
TRPP2™'"Y, respectively) each abolished the
flow-induced Ca®" entry inMI-CCD cells,
indicating an absolute requirement for both
TRPV4 and TRPP2 in the flow response. These
data suggest that, in renal MI1-CCD cells,
heteromeric TRPV4-P2 channels are responsible

Our coimmunoprecipitation

for flow-induced Ca" entry. As a support, when
TRPV4 and TRPP2 were coexpressed in
HEK293 cells, they also formed a flow-sensitive
Ca®" entry channel, the activity of which was
inhibited by TRPV4M®° TRPP2>'"Y cGMP,
and PKG. However, note that the decay kinetics
of flow-induced [Ca2+]i transients were very
different between MI1-CCD cells and
TRPV4-P2—coexpressing HEK293 cells. In
MI1-CCD cells, the [CaZ+]i responses were
transient (Figure 1A), whereas in HEK293 cells
that were coexpressed with TRPV4 and TRPP2,
the [Ca”']; responses were sustained (Figure 4A).
We speculate that the transient nature of the
[Ca2+]i response in M1-CCD cells is, at least
partly, because of a Ca’-mediated negative
feedback inhibition on TRPV4-P2 channels.
Similar feedback inhibition has been well
documented in vascular endothelial cells.25-27
In this feedback mechanism, Ca*" influx would
stimulate a nitric oxide-cGMP-PKG cascade,
resulting in a negative feedback inhibition on

channels  (i.e.,
channels in this

Ca’" entry heteromeric
TRPV4-P2 case). The
following sets of data support this notion: (/)
the effect of KT5823 on flow-induced [Ca%]i
transients in M1-CCD cells (Figure 1A) and (2)
the effect of TAT-TRPP2''"+TAT-TRPP2°*’
on flow-induced [Ca2+]i transients in M1-CCD
cells (Figure 6A). KT5823 and TAT-TRPP2™*"



treatments are both expected to interrupt the
feedback loop of nitric oxide-cGMP-PKG-Ca*"
entry channels, making the [Ca®']; transients
more sustained. Our results (Figures 1A and 6A)
support the hypothesis. Wild-type HEK293
cells lack the components of
oxide-cGMP-PKG signal cascades,
them unable to exhibit such a negative feedback
inhibition.

nitric
leaving

As for other potential candidate channels,
homomeric TRPV4 and heteromeric TRPV4-Cl1
channels are unlikely to be involved in M1-CCD
cells, because the flow-induced [Ca®']i
responses have an absolute requirement for
TRPP2 based on the effective dominant negative
function of TRPP2”°"'Y on the [Ca2+]i responses.
TRPC1 was reported to be expressed only in the
proximal tubule and thin descending limb but not
in the connecting tubule or the CCD.*® In our
experiments, a TRPCl-specific blocking
antibody T1E3 had no effect on the flow-induced
Ca®’ entry in M1-CCD cells (Figure 2), further
supporting that TRPC1 was not involved. Based
on the dominant negative effect of TRPV4MP,
TRPV4 is also absolutely required for the
flow-induced [Ca2+]i responses in M1-CCD cells.
These data argue against the involvement of the
TRPP1-P2 complex. However, we
exclude the possibility that TRPP1may interact
with heteromeric TRPV4-P2 tomediate flow
response. In fact, TRPP1 was reported to be

cannot

located in the cilia,9 a crucial structure for flow
sensation in renal epithelial cells.””° We found
that TRPV4 and TRPP2 are also colocalized in
the primary cilia of M1-CCD cells. Additional
studies are needed to explore whether TRPPI
could interact with heteromeric TRPV4-P2
channels in cilia to mediate the flow responses.

In conclusion, the present study shows that
flow-induced Ca*" entry in MI1-CCD cells is
mediated by heteromeric TRPV4-P2 channels
and that atrial natriuretic peptide, nitric oxide,
and c¢cGMP inhibit the Ca®" influx through
PKG-mediated phosphorylation on TRPP2
subunits.

CONCISE METHODS

Cell Culture, Cloning, and Transfection

HEK?293 cells were cultured in DMEM
supplemented with FBS (10%), penicillin (100
pg/ml), and streptomycin (100 U/ml). The
MI1-CCD cell line (CRL-2038; American Type
Culture Collection, Manassas, VA) is derived
from renal CCD microdissected from a mouse
transgenic for the early region of the SV40 virus
[strain Tg (SV40E) Bri7].>! M1-CCD cells were
cultured in 1:1 DMEM and Ham’s F-12 medium
with FBS (10%) supplemented with L-glutamine
(2 mM), penicillin (100 pg/ml), streptomycin
(100 U/ml), and dexamethasone (5 pM). All cells
were grown at 37°C in a 5% CO, humidified
incubator.

The mouse TRPV4 gene (NM_022017) and
TRPV4M®®  were gifts from Bernd Nilius.
TRPP2 was a gift from Gregory Germino.
TRPP2™""Y was a gift from Rong Ma. TRPP2
point  mutations generated by a
QuikChange Site-Directed Mutagenesis Kit
(Strata-gene). Mutagenic oligonucleotides were
CAA ACT AAA ACT GAA AAG AAA CGC
TGT AGA TGC CAT CTC AGA GAG for
T719A and CCAGAG CC GGAGGG GAG
CCATCT CCAGTG GGG for S827A. All genes
were cloned into a pcDNA6 vector for
expression. All clones were autosequenced by an
ABI310 autosequencer to verify the authenticity
of the genes.

HEK?293 M1-CCD
transfected with various using
Lipofectamine 2000 as described elsewhere.'
Transfection was achieved with 4 ug plasmid
DNA from each construct and 6 pl
Lipofectamine 2000 in 200 ul Opti-MEM
reduced serum medium in six-well plates. About
80% of the HEK293 or M1-CCD cells were
transfected by the respective
protocols, which was indicated by control
transfection using a GFP-expressing pCAGGS
vector or GFP-tagged TRPV4 and GFP-tagged
TRPP2. A stable PKG-containing cell line was

WEre

cells or cells were

constructs

successfully
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established under the selection pressure of
blasticidin. Functional studies were performed
2-3 days post-transfection.

Fluorescent Immunostaining of Cultured Cells

A double immunofluorescence assay was
performed. Briefly, M1-CCD or HEK293 cells
coexpressing TRPV4 and -P2 were seeded on
glass coverslips. The cells were rinsed with PBS
three times, fixed with 3.7% paraformaldehyde,
and permeabilized with 0.2% Triton X-100.
Nonspecific immunostaining was blocked by
incubating the cells with 2% BSA in PBS. The
cells were then incubated with anti-TRPV4
(rabbit polyclonal antibody; Alomone Labs) for 1
hour at room temperature. After three washes
with PBS, the cells were incubated with an
anti-TRPP2 (G20, goat polyclonal antibody;
Santa Cruz Biotechnology) antibody for 1 hour
at room temperature. After three washes with
PBS, the cells were incubated for 1 h with the
following pairs of secondary antibodies: donkey
anti-rabbit IgG conjugated to Alexa Fluor 488
(1:200) and donkey anti-goat IgG conjugated to
Alexa Fluor 546 (1:100). After washing and
mounting, immunofluorescence of the cells was
detected using an FV1000 confocal system.

Coimmunoprecipitation and Immunoblots

Coimmunoprecipitation and immunoblots were as
described elsewhere.' In brief, whole-cell lysates
from MI1-CCD cells or HEK293 cells
overexpressing TRPV4 and -P2 were extracted
with a detergent extraction buffer containing 1%
(vol/vol) Nonidet P-40, 150 mM NacCl, and 20 mM
Triszz HCI (pH 8.0) along with protease inhibitor
cocktail tablets. TRPV4 or TRPP2 proteins were
immunoprecipitated by incubating 800 pg
extracted proteins with 5 pg anti-TRPP2 (G20;
Santa Cruz Biotechnology) or anti-TRPV4
(Alomone Lab) antibody on a rocking platform
overnight at 4°C. Protein A agarose (for TRPV4
antibody) or protein G agarose (for TRPP2
antibody) was then added and incubated for an
additional 3 hours at 4°C. The immunoprecipitates
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were washed three times with PBS.

For the immunoblots, all of the samples were
fractionated by 7.5% SDS-PAGE, transferred to
poly (vinylidene difluoride) membranes, and
probed with the indicated primary antibodies at
1:200 dilutionina phosphate-buffered saline
with Tween-20 buffer that contained 0.1%
Tween-20 and 5% dry  milk.
Immunodetection was accomplished using

nonfat

horseradish peroxidase-conjugated secondary
antibody  followed by an  enhanced
chemiluminescence detection system.

Preparation of TLE3 and Preimmune 1gG

The T1E3 antibody was raised in rabbits using
the strategy described.'”*? Briefly, a peptide
corresponding to the TRPC1 putative pore region
(CVGIFCEQQSNDTFHSFIGT) was
synthesized and conjugated to a keyhole limpet
hemocyanin at Alpha Diagnostic International.
The coupled T1E3 peptide was injected to the
back of a rabbit followed by two boost doses.
T1E3 antiserum was collected 4 weeks after the
second boost. IgG was purified from the T1E3
antiserum and the preimmune serum using a
protein G column.

[Ca?*]; Measurement

Cell preparation and Ca’" measurements were
performed as described.!’ Cells were loaded with
Furo-2-AM and pluronic F127 in a normal
physiologic solution (NPSS) containing 140 mM
NaCl, 5 mM KCI, 1 mM CaCl,, 1 mM MgCl,,
10 mM glucose, and 5 mM Hepes (pH 7.4). Flow
was initiated by pumping NPSS containing 1%
BSA into a specially designed parallel plate flow
chamber that resembled the one described in the
work by Kanai er al,”® in which the cells
adhered to the bottom. Shear stress was ~5
dyne/cm’ and in some experiments, 0.5 dyne/cm’.
In experiments assessing the flow response in
Ca®'-free condition, the cells were exposed to
Ca®"-free solution for less than 2 minutes to the
avoid undesirable effect of Ca®" store depletion.
The Ca’-bound and -unbound Fura-2



fluorescence signals were measured using dual
excitation wavelengths at 340 and 380 nm using
an Olympus fluorescence imaging system.
Fura-2 ratio change was then converted to
[Caz+]i. The conversion was based on a standard
curve that was constructed using commercially
available Ca®" standard solutions of different
concentrations. The fluorescence in an area
without cells was taken as background and
subtracted; 10-20 cells were analyzed in each
experiment. Experiments were performed at
room temperature.

TAT-Mediated
M1-CCD Cells

Small peptides that contain TRPP2 PKG

Protein  Transduction into

phosphorylation sites (TRPP2%**’ SRRRGSIS;

TRPP2"", KLKRNTVD) were conjugated to
an transduction domain (YGRKKRRQRRR)
at Alpha Diagnostic International.** M1-CCD
cells were pretreated with TAT-TRPP2%**
(100 nM) and/or TAT-TRPP2"""? (100 nM) at
room temperature for at least 10 minutes

2+
before Ca” measurement.

RESEFSRRBELMRENLE

Materials

Fura-2/AM and Pluronic F-127 were obtained
from Molecular Probes. DMEM, DMEM/F12,
PBS, Opti-MEM, FBS, Lipofectamine 2000, and
protease inhibitors were from Invitrogen.
Anti-TRPV4 antibodies were from Alomone
Laboratories.Anti-TRPP2 antibody (G20) was
from Santa Cruz Biotechnology. Nonidet P-40,
sodium deoxycholate, SDS, CaCl,, BSA, glucose,
Trisz-HCI, trypsin, and MgCl, were purchased
from Sigma.

Statistical Analyses

A t test was used for statistical comparison. For
the comparison of multiple groups, one-way
ANOVA with Newman—Keuls was used.
Significances were set as P<<0.05.
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